
NEXt generation Techno-social Legal Encryption Access and Privacy nextleap.eu

Grant No. 688722. Project started 2016-01-01. Duration 36 months.

DELIVERABLE D4.1

FORMAL MODELLING OF FEDERATED IDENTITY

Natalia Kulatova (INRIA), Harry Halpin (INRIA)

Beneficiaries: INRIA (lead), IMDEA, UCL

Workpackage: D4.1 Formal Modelling of Federated Identity

Description: Formal definitions of decentralization, privacy, security, and
anonymity properties will be developed and proven using automatic
proof-proving on the federated identity protocol. Results will be
validated against open-source code.

Version: 1.0

Nature: Report (R)

Dissemination level: Public (PU)

Date:
2016-08-31

Project co-funded by the European Commission within the Horizon 2020 Programme.

D4.1 NEXTLEAP Grant No. 688722

Contents

1 Introduction 4

2 Formal Definitions 4
2.1 Security . 4
2.2 Privacy . 4
2.3 Anonymity . 4
2.4 Decentralization . 5

3 Formal Verification using F* 5

4 Sets and Lists 6

5 Skiplist 6
5.1 Formal Definition . 7
5.2 Skiplist Specification . 7
5.3 Complexity of Operations over skiplists . 8
5.4 API . 9

5.4.1 Insert . 9
5.4.2 Search . 10
5.4.3 Split . 11
5.4.4 Remove . 12

5.5 Skiplists with cryptographic hash pointers . 12

6 Merkle Tree 13
6.1 Formal Definition . 13
6.2 Specification . 13
6.3 API . 14

6.3.1 Proof of existence . 14
6.3.2 Proof of inclusion . 16

7 Verifiable Random Functions (VRFs) 16
7.1 Definition . 16
7.2 Specification . 17
7.3 Helper Functions . 17

7.3.1 OS2ECP . 17
7.3.2 ECP2OS . 17
7.3.3 I2OSP . 18

7.4 API . 18
7.4.1 ECVRF-prove . 18
7.4.2 ECVRF-proof2hash . 19
7.4.3 ECVRF-verify . 19

8 ClaimChain 20
8.1 Introduction . 20
8.2 Map . 20
8.3 Metadata . 20

8.3.1 Keys . 20
8.3.2 Identifiers . 21

8.4 Claim . 21
8.5 Capabilities . 22

8.5.1 claimEncoding . 22
8.5.2 decodeClaim . 23

2 Page 2 of 27

D4.1 NEXTLEAP Grant No. 688722

8.5.3 encodeCapability . 23
8.5.4 decodeCapability . 23
8.5.5 computeCapabilityLookupKey . 24

8.6 ClaimChain Module . 24
8.6.1 generateBlockGeneral . 25
8.6.2 cipherClaims . 25
8.6.3 oneUserEncoding . 26
8.6.4 allUserEncoding . 26
8.6.5 claimRetrieval . 27

9 Conclusion 27

3 Page 3 of 27

D4.1 NEXTLEAP Grant No. 688722

1 Introduction

In this deliverable, we outline formal models of decentralization, privacy, security, and anonymity for ClaimChain,
a federated identity system for decentralized key management conceived in D2.2 and completed in D4.2. We
present our formal verification techniques using F*, a programming language developed by Inria, and then
demonstrate how each of the primary components of ClaimChain can be developed using F*: Skiplists, Merkle
Trees, and Verifiable Random Functions (VRFs). Each component is built using F* in order to prove their various
properties, and then extracted to CompCert C, a formally verified subset of C. Therefore, code samples in F* are
also followed by C code samples. All code has been released as open-source code.1

2 Formal Definitions

Note that these definitions are simplified definitions of the formal definitions presented in D4.2. The formal
proofs done in D4.2 consist of proving properties via reductions of Claimchain properties to the properties of the
underlying primitives manually. These proofs are more sophisticated than can be handled by F*, and so we will
only define the properties that F* can prove, i.e. security properties that relate to integrity, the secrecy of key
material, and indistinguishability. More complex notions of decentralization and anonymity require changes to
the fundamental language F* itself in order to be proven.

2.1 Security

Claimchains provide integrity of all claims via the use of a blockchain mechanism based on hash functions.
Therefore, for a given block B with one or more claims, any modification of the claim B to B′ will alter the hash
function H such that H(B) 6= H(B′). A ClaimChain is implemented as a list of hashes functions over blocks
H1...Hn for n≥ 1 where each Hn(Bn | Hn−1) for all n.

2.2 Privacy

Claimchains provide privacy by allowing claims to be encrypted. This leads to claim indistinguishability, namely
that for any two blocks B1 and B2 and encryption function E, E(B1) is computationally indistinguishable from
E(B2).

2.3 Anonymity

Generally it is unknown how to formalize anonymity in a manner that can be proven using automatic proof-
proving frameworks such as F*. The informal notion of anonymity is that of unlinkability, namely that two or
more items of interest cannot be linked together [4]. In terms of the ClaimChain architecture, it should be noted
that claims are encrypted to readers. Therefore, one definition of anonymity is reader unlinkability, namely that
for any given encrypted claim, it cannot be determined which reader the claim was encrypted for by an outside
observer (i.e. anyone except the owner of the ClaimChain that encrypted a claim for one or more readers). Thus,
for any blocks B encryption function E that requires use of public key K, given two public keys K1 and K2 for any
two readers, E(B,K1) is computationally indistinguishable from E(B,K2).

1https://github.com/nextleap-project/verified-claimchain

4 Page 4 of 27

https://github.com/nextleap-project/verified-claimchain

D4.1 NEXTLEAP Grant No. 688722

2.4 Decentralization

As explored in D2.1, decentralization means that there is no single trusted authority in the use of the protocol.
In the context of the ClaimChain architecture, this means for any claim, it may be verified using one or more
ClaimChains and that, unlike the replicated state of traditional blockchain architectures like Bitcoin or Ethereum,
ClaimChains may have different states. Therefore, any given claim C may be recorded in any given block BC and
that for any two ClaimChains n and m given by their respective head imprint hash function using hash function
H, it may be the case that Hn(BC) 6= Hm(BC).

3 Formal Verification using F*

In general, with formal verification we need to prove the correctness of implemented code with regard to a
specification. In the F* programming language,the specification is given as F* code itself, and then we can
automatically prove the properties that need to be proved

F* (pronounced “F star”) is a typed functional programming language designed for program verification, and
a complete tutorial is available online.2 Although many other languages exist for formal proof-proving, such
as the proof assistant Coq,3, F* was chosen due to several reasons. Languages like Coq and F* are used
for protocol and program verification, so they do not create compiled code that can be executed by default.
However, OCaml code from F* can executed, allowing verified code to actually be run. Yet, very platforms
support OCaml natively. However, OCaml code created by F* can then be translated using Kremlin4 to C and
provably preserve the semantics of the original verification. Therefore, from a subset of F* called Low*, we can
translate to CompCert’s C. The final C program is very efficient in terms of performance and preserves all the
security guarantees. Therefore, F* can be extracted to C such that the code in C will have the same proofs of
correctness and as the source code, allowing the verified cryptographic code to be ran efficiently across multiple
platforms and linked to existing software projects, such as those in WP5. As the current version of ClaimChain in
D2.2 and D4.2 is built using Python, which has difficulty running on mobile platforms, this could help the adoption
of ClaimChain by mobile clients such as K-9 Mail or Signal on Android. F* has already been used in several
successful applications for protocol verification, in particular the verified reference implementation of the TLS
protocol: miTLS. Code samples and references to F* and C are given using this code font if given inline in text.

In order to understand F*, it is important to note that the formal verification is typically done in the type system
via the use of refinement types in F*. For example, the type a:nat{a < 10} is a refinement of the type nat
(natural numbers), which means that for this given type, all numbers must be less than 10. The subset of the
natural numbers is decreased by the predicate. Also, F* allows effects, but keeps track of different effects during
the computation. The most commonly used effect is Tot. This effect is guaranteed (provided the computer has
enough resources) to evaluate to a result of the type given by the function without having an effect, and therefore
without entering an infinite loop, reading or writing the program’s state, throwing exceptions, performing input
or output, and any other source of error. Of course, there are many different types of effects that allow more
variation. In particular, there are:

• Dv: the effect of a computation that may diverge;

• ST: the effect of a computation that may diverge, read, write or allocate new references in the heap;

• Exn: the effect of a computation that may diverge or raise an exception.

In general, the verification for the correctness of implementation of data structures and protocols are proofs of
correctness of implementation, where the correctness of implementation guarantees the efficiency of various
operations. The above-mentioned effect types show that the implementation is behaving as specified, and so

2https://fstar-lang.org/
3https://coq.inria.fr/
4https://github.com/FStarLang/kremlin

5 Page 5 of 27

https://fstar-lang.org/
https://coq.inria.fr/
https://github.com/FStarLang/kremlin

D4.1 NEXTLEAP Grant No. 688722

there are no unexpected effects, such as memory leaks and out of bound pointers, that can then in turn cause
unintended effects, including errors in operation and security flaws.

Furthermore, for cryptographic protocols we want to prove formally-defined security properties. For security pro-
tocols, proofs of security of a protocol are done using reductions to the underlying primitives. Thus, for a simple
data structure and protocol involving preserving integrity using the blockchain, the security of the blockchain can
be proven to be equivalent to the security of the underlying hash function (as given in the definition of security
in Section 2.1.) Therefore, we assume the underlying primitive is secure and has the correct properties, and
can then verify using proofs that the security properties of the protocol can be reduced to those of the primitives
employed.

For F*, the formal specification is given by the F* code itself. Therefore, for the data structures underlying
ClaimChain, we have present the F* code of the specification composed of a data structure and functions on
that data structure. For didactic purposes, for various algorithms we may present the underlying F* code that
implements functions if the particular function may have multiple instantiations, in order to show which particular
function with what optimization and efficiency properties was implemented. As most programmers will use the
C bindings rather than the F* code, so sample C bindings have been attached to the F* code.5

4 Sets and Lists

In terms of specification, the mathematical structure is a set, where a set is defined as zero or more elements s
such that s ∈ S. The set contains the following operations in a terms of a API given an element e:

• Inserting of a new element: insert(S,e)

• Removing an existing element: remove(S,e)

• Searching for an existing element: search(S,e)

A set may also have an index and so be a list via an ordering function (f). The ordering function can be given
by an ordered set of integers I where for i ∈ I then (i−1)< i < i+1. This means the number of operations is
increased so that we can in addition to set operations, add:

• Search for an element by index: search(S,i)

• Removing an existing element found by index: remove(S,i)

• Splitting the list at index: split(S,i)

In terms of implementations, sets and lists may be implemented in many different ways with effect on both the
efficiency and security properties of the final implementation. For example, a set may be implemented by a
simple list, or for efficiency it may be implemented by a binary tree. However, we are going to implement lists as
skiplists, given in Section 5. Sets for proof of inclusion are implemented via Merkle trees, given in Section 6.

5 Skiplist

A skiplist is a data structure for an ordered list that is used to efficiently store and retrieve data with greater
efficiency than a linked list and with less expensive re-ordering than a balanced tree. [5]. A skiplist does this by
having an index that can “skip” ahead rather than linearly iterate through the list.

5Note that the C bindings may change. The latest version of both the F* code and the C code is available at https://github.com/
nextleap-project/verified-claimchain

6 Page 6 of 27

https://github.com/nextleap-project/verified-claimchain
https://github.com/nextleap-project/verified-claimchain

D4.1 NEXTLEAP Grant No. 688722

5.1 Formal Definition

A skiplist is an ordered list S of cardinality n with two sets of indices I and J. The first index I is of length n and
J is a secondary index of length m < n.

5.2 Skiplist Specification

Our specification of a skiplist in F* consists of two elements: A structure to store the data, and then a second
structure that is an array of indexes that can store the indexes on different levels (this is contrast to a list that has
only a single array of indices).

type s k i p L i s t
(a : eqtype) (f : (a−>a−>Tot bool)) =

| Mk:
values : seq (a) { sor ted f values}−>
indexes : seq (non_empty_ l is t nat)

{Seq . leng th values = Seq . leng th indexes } −> s k i p L i s t a f

Equivalent code in C is given below, although note that the ordering constraint is not explicitly stated as C does
not support these kinds of constraints. However, in compiled CompCert C code, the constraints are enforced via
explicit checks on bounds.

typedef u i n t 8 _ t bytes ;
typede l u i n t 8 _ t a ;
s t r u c t s k i p L i s t
{

a∗ values ;
i n t ∗ indexes ;

}

In F* (and unlike the simpler C code), the sequence of values is explicitly specified to be sorted (i.e. for a given
index of each element with the index that is more than current one satisfies the predicate f , where f is defined in
terms of an ordering function for a given type of data). This is required so that the list can be searched effectively.
Second, in order to preserve memory safety, all the indexes are also stored in a sequence that has the same
length as the sequence of values. For each value there exists at least one element it it references, which is by
default the next element for a linked list. However, in a skip-list a single element may be referenced by more than
one index.

Correctness of our implementation is shown via proving lemmas, which are statements that carry useful prop-
erties about the program that are used in proofs of functional correctness or security. The lemma below shows
that a skiplist can be used as usual linked list (with counter_global used to reference the indexes in skiplist).
The data structure is organized such way that there exists an index to the following element in the sequence.

lemma_ l inked_ l i s t : s l : s k i p L i s t a f { Sl . l eng th s l > 0} −>
counter_g loba l : nat { coun te r_g loba l < (Sl . l eng th s l −1)} −>

Lemma(ensures (last_element_ indexed s l coun te r_g loba l =
counter_g loba l +1))

In order to prove memory correctness, we prove the lemma that shows that all the indexes used are less than
than the length of the data structure. It means that none of the indexes are going to go “out of bounds” of the data
structure. Note that counter_global in used for the referencing of the index in general, while counter_local
is used to reference the concrete index of a particular point in the array of indexes):

7 Page 7 of 27

D4.1 NEXTLEAP Grant No. 688722

lemma_indexLessThanSize : s l : s k i p L i s t a f { leng th s l > 0} −>
Lemma(ensures (f o r a l l (counte r_g loba l : nat { coun te r_g loba l < leng th s l })
(coun te r_ loca l : nat { coun te r_ loca l < L i s t . l eng th

(get Index s l counte r_g loba l) }) .
(fun (x : nat) −> x < (leng th s l))

(L i s t . index (get Index s l counte r_g loba l) coun te r_ loca l)))

Next, we want to prove that the list of values is in order, namely that all the indices that can have a concrete
value have references that are strictly more than the index of the value. It means that all the elements the value
is referencing will be strictly more than the value itself.

lemma_valuesMoreThanIndex : s l : s k i p L i s t a f { leng th s l > 1} −>
Lemma(ensures

(f o r a l l (counte r_g loba l : nat { counte r_g loba l < leng th s l })
(coun te r_ loca l : nat

{ coun te r_ loca l < L i s t . l eng th
(get Index s l counte r_g loba l) }) .

(fun (x : nat) −> x > counte r_g loba l)
(L i s t . index (get Index s l counte r_g loba l) coun te r_ loca l)))

5.3 Complexity of Operations over Skiplists

The complexity of linked list is O(n), while the average complexity of search/insert/delete algorithms for skiplist is
O(logn) (where n is the number of elements stored in skiplist. Note that the worse-case complexity of a skip list
is the same as a linked list and in order to guarantee O(logn) complexity one would have to use a more complex
and expensive data structure such as a balanced tree. However, probabilistically the chance of a skiplist having
worse case behavior is small, so the average case complexity of O(logn) should hold for queries, and a skiplist
does not have the overhead of recreating the list everytime a new item is added.

For an example of how this average case complexity is achieved, let’s start with a simple linked list where each
list has just one link to the next element. Yet unlike a normal linked list, a skiplist has a separate array of indexes
that can point to any other index in the list. So in a linked list, the first layer is used to store the next value and in
this case the skiplist could be represented as a usual linked list.

type s k i p L i s t 1 l e v e l (a : eqtype) (f : cmp a) =
| Mk: values : seq (a) { sor ted f values}−>

indexes : seq nat { f o r a l l (y : nat { y < leng th indexes) .
indexes [y] = indexes [y]+1 } −> s k i p L i s t a f

To find an element a, one traverses the list of all elements until finding a. As the next step, we assume that the
index list now has a reference to the index not only on the next element, but also to the element two positions
ahead:

8 Page 8 of 27

D4.1 NEXTLEAP Grant No. 688722

type s k i p L i s t (a : eqtype) (f : cmp a) =
| Mk: values : seq (a) { sor ted f values}−>

indexes : seq (non_empty_ l is t nat)
{ f o r a l l (y : nat { y < leng th indexes }) .
indexes [y] [0] = indexes [y +1] [0]+1 / \
indexes [y] [1] = indexes [y +1] [1]+2 / / f o r each second element

} −> s k i p L i s t a f

Therefore, this makes the search twice as quick. While going through the element with index (y,0) = 1, one
checks whether the element’s value at indices y,1 is more than the element a. If it’s the case, the search will be
repeated starting from the element (y,1) = 3, thus skipping the second element. In the same manner, if each
fourth node has links to four nodes ahead, the search will be done 4 times faster. To generalize,for i = 0...log(n)
1/2i of the nodes will have a link to next 2i elements, the search efficiency will be O(log(n)). Another assump-
tion is that the structure stays balanced, as otherwise there is a loss of performance during the insert and delete
procedure because it’s needed to rebuild the indices. However, the use of randomized insertion can create a
randomized structure with performance that is close to ideal [3]. This is done via a probability p such that the
probability of the newly inserted node being on level 2 of the index is equals to 1/2, to have 3 levels equals to
1/4 etc.

FStar code:

assume va l f l i p c o i n : u n i t −> Tot (r : nat { r = 0 \ / r = 1 })

va l random : max : nat −> counter : nat { counter <=max} −> r e s u l t : nat −>
Tot (nat) (decreases (max − counter))

l e t rec random max counter r e s u l t =
i f counter = max then r e s u l t e lse

l e t f l i p = f l i p c o i n () i n
i f f l i p = 0 then r e s u l t e lse
l e t r e s u l t = r e s u l t + 1 i n
random max (counter + 1) r e s u l t

5.4 API

5.4.1 Insert

If the list already exists, the Insert is called, otherwise the list is creation helper function is called. This creation
function consists on the generation of the list with one element given the value of infinity so it will always be
the largest element in a list and does not have a reference to any element. This is necessary as in case of an
element doesn’t have an element that can be referenced, the reference will go to the last element.

9 Page 9 of 27

D4.1 NEXTLEAP Grant No. 688722

va l c reate : value_max : a −> elements_number : nat { elements_number > 0}
−>Tot (s l : s k i p L i s t a f { leng th s l = 1 })

Insert is divided into searching for the location for the new element to be inserted and the insertion itself. The
abstract procedure of insertion is as follows:

FStar Code:

l e t i n s e r t value s l max_level =
l e t place = searchPlace s l value i n
l e t l e v e l = genera te_ leve l place max_level i n
l e t values = change_values value s l place i n
l e t indexes = change_indexes s l place l e v e l i n
Mk values indexes

C Function:

s k i p L i s t i n s e r t (a value , s k i p L i s t ∗ s l , i n t index , i n t max_level)

The procedure searchPlace returns the place for the element value to put and ensures value[place] should be
strictly more than value[place+1] should be strictly less than value.

FStar Code:

va l searchPlace : s l : s k i p L i s t a f { Sl . l eng th s l > 0} −> value : a−>
Tot (place : nat { (

(p lace = 0 / \ f value (Seq . index (getValues s l) 0))
\ / (p lace < (Sl . leng th s l −1) / \

f value (Seq . index (getValues s l) (p lace +1)) / \
f (Seq . index (getValues s l) p lace) value))

})

The generate_level procedure returns a number of elements that new value will have reference to, and change_values
procedure takes the existing sequence of values and returns the sequence with the new element put on the place
calculated by searchPlace procedure, and then change_indexes procedure finally takes the existing sequence
of indexes for each value and return the sequence with index list for the new element put on the place calculated
by searchPlace routine. It thus guarantees that the element was inserted to the right position and that the new
structure satisfies the skiplist specification.

5.4.2 Search

The search procedure is implemented as a routine in order to find an element in existing skiplist. To find element
v, the search procedure starts with index 0 and then takes the largest index element and compares whether it
is larger than v. If it’s the case, then the search routine starts again with an element referenced by the index.
Then, the next largest index is checked. The algorithm continues either until the end of the skiplist, or until the
element v in the list is found with values[place] having the element.

FStar Code:

va l search : s l : s k i p L i s t a f { Sl . l eng th s l > 1}−> element : a −>
Tot (op t ion (place : nat { place < Sl . leng th s l / \ element = getValue s l place }))

C Function:

nat∗ search (s k i p l i s t ∗ s l , a element) ;
10 Page 10 of 27

D4.1 NEXTLEAP Grant No. 688722

Additionally, the search routine provides the following interfaces:

FStar Code:

va l nextElement : s l : s k i p L i s t a f { Sl . l eng th s l > 1}−>
element : a −> Tot (op t ion (a))

va l nextElement : s l : s k i p L i s t a f { Sl . l eng th s l > 1}−>
index : nat −> Tot (op t ion (a))

va l e x i s t : s l : s k i p L i s t a f { Sl . l eng th s l >1} −>
element : a −> Tot (bool)

C Functions:

a∗ nextElement (s k i p L i s t ∗ s l , a element) ;
a∗ nextElementIndex (s k i p L i s t ∗ s l , nat index) ;
bool e x i s t (s k i p L i s t ∗ s l , a element) ;

The search routine used in insert and remove procedures.

5.4.3 Split

The split procedure splits a skiplist into two different skiplists. Having only part of the skiplist could be useful,
such as when reasoning only about part of skiplist such as when searching for only up to a certain element. This
could be useful for ClaimChain when in the case of key compromise, one could search until which the chain was
trusted and to discard the rest.

FStar Code:

l e t s p l i t s l p lace max =
l e t f s t_v , f s t _ i = a d d _ i n f i n i t y f s t _ v f s t _ i max i n
l e t f s t _ i = reg_indexes f s t _ i p lace i n
l e t snd_i = r igh t_par t_ reg_ indexes place s l [p lace + 1] 0 i n
(Sl .Mk f s t _ v f s t _ i ; Sl .Mk snd_v snd_i)

C Function:

s k i p L i s t ∗ s p l i t (s k i p L i s t ∗ s l , nat place , a max)

The addIn f inity is a procedure (the first line) that takes a splitted sequences of values and indexes and returns
the sequence with a tail added. The regIndexes (2) and rightPartRegIndexes (3) procedures take the index
lists of both sequences and regenerate them to be able to index the newly changed value sequences. As a
result, we ensure the new structures satisfy all the properties of skiplist. The remove procedure uses the place
of the element as a divisor:

FStar Code:

va l s p l i t : s l : s k i p L i s t a f { Sl . l eng th s l > 0} −>
place : nat { place > 0 / \ p lace < Sl . leng th s l −1} −>
Tot (s k i p L i s t a f ∗ s k i p L i s t a f)

C Function:

s k i p L i s t ∗ s p l i t (s k i p L i s t ∗ s l , nat place)

11 Page 11 of 27

D4.1 NEXTLEAP Grant No. 688722

It could be preceded by a search routine. This function will provide an interface to split using the particular value
of skiplist:

FStar Code:

va l s p l i t : s l : s k i p L i s t a f { Sl . l eng th s l > 0} −>
element : a −>
Tot (s k i p L i s t a f ∗ s k i p L i s t a f)

C Function:

s k i p L i s t ∗ s p l i t (s k i p L i s t ∗ s l , a element) ;

5.4.4 Remove

Remove procedure is similar to split, with the small difference that the first element of the one of sequences will
be removed and the skiplist are then merged without that member.

FStar Code:

l e t remove s l place =
l e t values_new = rebu i ldVa lues values place i n
l e t indexes_new = rebu i ld Indexes s l place i n
Sl .Mk values_new indexes_new

C Function:

vo id remove (s k i p L i s t ∗ s l , nat place)

In detail, rebuildValues splits the skiplist at place, and then the indices are rebuilt without the removed element
by rebuildIndexes. The remove procedure is not used in ClaimChain due to the fact that ClaimChain is append-
only, but it is a useful procedure to allow a complete verified implementation of skiplist that can be used by other
projects.

If remove is given an element rather than an index, it can remove the element as well.

FStar Code:

va l remove :
s l : s k i p L i s t a f { Sl . l eng th s l > 1} −>
element : a −>
ML(r : s k i p L i s t a f { Sl . l eng th s l = Sl . l eng th r + 1 })

C listing:

vo id remove (s k i p L i s t ∗ s l , a element) ;

5.5 Skiplists with cryptographic hash pointers

A cryptographic hash function is a hash function which takes an input and returns a fixed-size alphanumeric
string where it is computationally difficult to find two messages for which the same hashes of which will be
identical. In terms of skiplist, the hash point in the index will consist of the hash of the data at the value. This
mechanism gives the security guarantees of integrity of the data, so that a third-party can check that there was
no data was changed. It will lead to a small change of memory consumption for the data structure by adding the

12 Page 12 of 27

D4.1 NEXTLEAP Grant No. 688722

hash of the values, and for every procedure it will be needed to regenerate a hash.

type c r y p t o S k i p L i s t
(a : eqtype) (f : (a−>a−>Tot bool)) (hash : (a −> hash)) =
| Mk: values : seq (a) { sor ted f values}−>

indexes : seq (non_empty_ l is t nat)
{Seq . leng th values = Seq . leng th indexes}−>

hashes : seq (hash)
{Seq . leng th hashed = Seq . leng th values / \
{ f o r a l l (y : nat { leng th values < y) .

Seq . index y hash = hash (Seq . index y values) +
hash (Seq . index y indexes) }
−> s k i p L i s t a f

6 Merkle Tree

Merkle trees are useful implementation of sets, allowing both efficient data storage with integrity guarantees of
the data, with a structure that makes it easier to prove inclusion of an element in the set.

6.1 Formal Definition

They were defined by Merkle as way to do one-time Lamport Signatures without requiring an entirely new public
key each time [1]. A Merkle Tree is an cryptographically verified implementation of a map M. For a given value
a, the map M returns another value b such that M(a) = b. Since it is cryptographically verified, a Merkle Tree
maintains the property that for a given a there can be only one b and that a proof p can be given show that
M(a) = b. For Merkle Trees, the proof p is given by the integrity property of a hash function over a path in the
tree.

6.2 Specification

Merkle trees are based on a tree where each leaf of the tree has a value and each root contains a concatenation
of hashes of two leaves.

FStar Code:

open HashFunction

type hash = seq nat
type data = seq nat
type merkleTree : l e v e l : nat −> h : hash −> Type =
| MLeaf : element : data −> merkleTree 0 (hashFunc element)
| MNode: # l e v e l : nat −> #h1 : hash −> #h2 : hash −>

lnode : merkleTree l e v e l h1 −>
rnode : op t ion (merkleTree l e v e l h2) −>
merkleTree (l e v e l +1) (hashConcat h1 h2)

C Code:

13 Page 13 of 27

D4.1 NEXTLEAP Grant No. 688722

s t r u c t MerkleTree
{

nat l e v e l ;
bytes hash ;
MerkleTree∗ lnode ;
MerkleTree∗ rnode ;

}

6.3 API

6.3.1 Proof of existence

To be able to prove the inclusion of an element in the Merkle Tree, a path is provided as a proof. The path
consists of a list of bypes that contain the path, include at every bit the directions of whether left or right should
be chosen after each root. This path can then be used to get the value of the element according to path:

FStar Code:

va l g e t _ e l t : #h : hash −> path : path −> t ree : mtree (len path) h −> Tot data
(decreases path)

l e t rec g e t _ e l t #h path t ree =
match path w i th

| [] −> L ?. data t ree
| b i t : : path ’ −>

i f b i t then
g e t _ e l t #(N?. h1 t ree) path ’ (N?. l e f t t r ee)

e lse
g e t _ e l t #(N?. h2 t ree) path ’ (N?. r i g h t t r ee)

C Function:

bytes g e t _ e l t (bytes hash , bytes path , MerkleTree t ree) ;

A verifier can use the path to verify for a given Merkle Tree that the data exists by computing the root hash of the
tree given the path, without having to recompute the values of the entire tree but only those needed to compute
the hash of the path. First a prover generates the path to the value in the Merkle Tree.

FStar Code:

va l prover : #h : hash −>
path : path −>
t ree : mtree (len path) h −>
Tot (p : p roo f { lenp p = len path })
(decreases path)

l e t rec prover #h path t ree =
match path w i th

| [] −> Mk_proof (L ? . data t ree) []

| b i t : : path ’ −>
l e t N #dc # h l #hr l e f t r i g h t = t ree i n
i f b i t then

l e t p = prover path ’ l e f t i n
Mk_proof (p_data p) (hr : : (p_stream p))

14 Page 14 of 27

D4.1 NEXTLEAP Grant No. 688722

else
l e t p = prover path ’ r i g h t i n
Mk_proof (p_data p) (h l : : (p_stream p))

Then a verifier verifies the path provided by the prover. The following code creates a verified that matches the
path (the p_stream, or “proof stream”) by checking the hash for each bit.

FStar Code:

va l v e r i f i e r : path : path −> p : proo f { lenp p = len path } −> Tot hash
l e t rec v e r i f i e r path p =

match path w i th
| [] −> gen_hash (p_data p)

| b i t : : path ’ −>
match p_stream p wi th

| hd : : _ −>
l e t h ’ = v e r i f i e r path ’ (p _ t a i l p) i n
i f b i t then

gen_hash (Concat h ’ hd)
e lse

gen_hash (Concat hd h ’)

This is then verified to be correct in the following code, where the path provided can then verified by the lemma
that shows that for each the correctness of the proof of inclusion in the Merkle Tree depends recursively on the
values in the rest of the tree.

va l cor rec tness : #h : hash −>
path : path −>
t ree : mtree (len path) h −>
p : proo f { p = prover path t ree } −>
Lemma (requ i res True) (ensures (v e r i f i e r path p = h))
(decreases path)

l e t rec cor rec tness #h path t ree p =
match path w i th

| [] −> ()
| b i t : : path ’ −>

i f b i t then
cor rec tness #(N?. h1 t ree) path ’ (N?. l e f t t r ee) (p _ t a i l p)

e lse
cor rec tness #(N?. h2 t ree) path ’ (N?. r i g h t t r ee) (p _ t a i l p)

The last lemma shows that the only way a verifier can be tricked into accepting proof for of an non-existent ele-
ment is if there is a hash collision, and therefore show a reduction of the security of a Merkle Tree to that of the
underlying function. If the hash function used is resistance to collision attacks and is therefore second-preimage
resistant, the Merkle Tree should be secure.

type h a s h _ c o l l i s i o n =
c e x i s t s (fun n −> c e x i s t s (fun (s1 : mst r ing n) −> c e x i s t s (fun (s2 : mst r ing n) −>

u : u n i t { gen_hash s1 = gen_hash s2 / \ not (s1 = s2) })))

15 Page 15 of 27

D4.1 NEXTLEAP Grant No. 688722

va l s e c u r i t y : #h : hash −>
path : path −>
t ree : mtree (len path) h −>
p : proo f { lenp p = len path / \ v e r i f i e r path p = h / \

not (g e t _ e l t path t ree = p_data p) } −>
Tot h a s h _ c o l l i s i o n
(decreases path)

l e t rec s e c u r i t y #h path t ree p =
match path w i th

| [] −> Ex In t ro data_s ize (Ex In t ro (p_data p) (Ex In t ro (L ? . data t ree) ()))

| b i t : : path ’ −>
l e t N #dc #h1 #h2 l e f t r i g h t = t ree i n
l e t h ’ = v e r i f i e r path ’ (p _ t a i l p) i n
l e t hd = Cons?. hd (p_stream p) i n
i f b i t then

i f h ’ = h1 then
s e c u r i t y path ’ l e f t (p _ t a i l p)

e lse
Ex In t ro (hash_size + hash_size)

(Ex In t ro (Concat h1 h2) (Ex In t ro (Concat h ’ hd) ()))
e lse

i f h ’ = h2 then
s e c u r i t y path ’ r i g h t (p _ t a i l p)

e lse
Ex In t ro (hash_size + hash_size)

(Ex In t ro (Concat h1 h2) (Ex In t ro (Concat hd h ’) ()))

6.3.2 Proof of inclusion

As a proof of inclusion, we are planning to provide two different paths for the trees. Each path will correspond to
the existing tree. First path describes the way to reach the existing tree in the new one, the second path shows
the way to reach the added tree. Presence of both in merkle tree proves the correctness of addition.

7 Verifiable Random Functions (VRFs)

A Verifiable Random Function (VRF) is the public-key version of pseudorandom function, such as a keyed
cryptographic hash as used in MACs. Normally a keyed cryptographic hash takes as its argument a private key
and a message, and from these produces a cryptographic hash value that can be verified only with a secret
key. However, a Verifiable Random Function requires an asymmetric keypair, where the hash is computed with
the secret key and an input and the hash can publicly verified via the use of a public key. If someone does not
possess the public key, they cannot verify the hash. This is useful when one wants to achieve indistinguishability
between hashed messages, but not have the verification of the hashed message depend on the possession of
the cleartext messages. In summary, only the person who has the private key could generate a hash, while all
owners of the corresponding public key could verify its correctness.

16 Page 16 of 27

D4.1 NEXTLEAP Grant No. 688722

7.1 Definition

A VRF was defined as a function f that, in combination with a public-private keypair K consisting of private key
sk and public key pk, such that for any value x applied to the function y = f (x,sk), the public key pk can prove
that y = f (x,sk). The VRF construction was defined by Micali et al. [2]

7.2 Specification

The VRF specification is that of Goldberg et al. currently in standards track in the IETF, although some steps
are in flux (such as the order of hash functions) and therefore minor changes may be expected throughout
the lifetime of the NEXTLEAP project until the IETF specification finalizes.6 A VRF does not maintain a data
structure, so it is specified entirely in terms of its API as given in Section 7.4.

7.3 Helper Functions

However, we did have to make a number of choices about our concrete implementation of the specification, as
the specification specifies a number of options, including the RSA full domain hash. In particular, we used the
P-256 (NIST) curve but in the future we will explore if we can use the Ed25519 curve, as that curve has been
formally verified itself in F* [?].

For a hash function, we use SHA256. As our verified VRF is based on an elliptic curve, it uses the following
operations over the curve:

• EC point multiplication

• EC point addition

• Check whether the specified point belongs to the curve

The following helper functions are used to make a casting between data types. They are implemented according
to the specification described in Standards for Efficient Cryptography Group (SECG).7 The point convertion is
done using point compression.

7.3.1 OS2ECP

The OS2ECP procedure takes as an input a bytes representation of a EC point and returns the corresponding
point:

FStar Code:

va l _OS2ECP : bytes −> Tot (s e r i a l i z e d _ p o i n t)

C Function:

Poin t∗ _OS2ECP (bytes b) ;

6https://datatracker.ietf.org/doc/draft-goldbe-vrf/
7http://www.secg.org/sec1-v2.pdf

17 Page 17 of 27

https://datatracker.ietf.org/doc/draft-goldbe-vrf/
http://www.secg.org/sec1-v2.pdf

D4.1 NEXTLEAP Grant No. 688722

7.3.2 ECP2OS

The ECP2OS function does the inverse, namely taking a EC point and returns the corresponding bytes repre-
sentation of the point:

FStar Code:

va l _ECP2OS : gamma: s e r i a l i z e d _ p o i n t −> Tot (r : bytes)

C Function:

bytes _ECP2OS (Po in t∗ gamma) ;

7.3.3 I2OSP

. This procedure of that takes in an integer and returns the corresponding byte representation. It also has an
inverse OS2IP.

FStar Code:

va l _I2OSP : value1 : i n t −> n : i n t { n > 0} −> Tot (r : bytes {Seq . leng th r = n })

C Functions:

bytes _I2OSP (i n t value1 , i n t n) ;
i n t _OS2IP (bytes s) ;

7.4 API

A VRF consists of three functions over two roles. The first role is the verifier that attempts to prove that the
owner indeed possesses a secret key. The owner produces a hash that is keyed by their secret key. The verifier
has a public key for a hash. The verifier receives a proof from the owner of the secret key. The verifier then
takes the proof and calculates the hash. If the hash computed by verifier is equal to the hash publicly created by
the owner from the input, then the owner does indeed possess the secret key. These are given by the following
three functions:

• ECVRF-prove: The proof generation function

• ECVRF-proof2hash: Returns the corresponding hash from a proof

• ECVRF-verify : Given a public key, proof, and hash and returns whether or not a proof is valid.

7.4.1 ECVRF-prove

ECV RF− prove takes input to be hashed and an asymmetric keypair and returns the proof that is used to verify
the correctness of computed hash. First, the input is mapped to a point on the elliptic curve and converted to a
hash. Then there is a nonce generated less than q-1. This is used with the secret key material to calculate a
proof. A γ is calculated by taking the hash to the exponent of the secret key. Finally, a hash is calculated based
on the secret key and the rest of the parameters as well as a value s based on the nonce and hash. The last line
concatenates the γ, the hash based on the secret key, and s.

FStar Code:

18 Page 18 of 27

D4.1 NEXTLEAP Grant No. 688722

l e t ECVRF−prove inpu t pr iva teKey =
l e t h = ECVRF−hash−to−curve (input , g^x) i n
l e t gamma = h^x i n
l e t k = random (0 (q−1)) i n
l e t c = ECVRF−hash−po in t s (g , h , pr ivateKey , gamma, g^k , h^k) i n
l e t s = k − c ∗ x mod q i n
l e t p i = ECP2OS(gamma) | | I2OSP (c , n) | | I2OSP (s ,2 n) i n p i

C Function:

bytes ECVRF−prove (bytes input , bytes pr iva teKey)

Lemmas have been created to verify the security properties of the VRF. For example, restrictions are added to
the length of the input to meet the restrictions of SHA256 hash function.

va l _ECVRF_prove :
i npu t : bytes {Seq . leng th i npu t < pow2 61 − (op_Mu l t i p l y 2 n) − 5 } −>
publ ic_key : s e r i a l i z e d _ p o i n t −> pr iva te_key : bytes −>
generator : s e r i a l i z e d _ p o i n t−>
Tot (p roo f : op t ion bytes {Some? proof ==> Seq . leng th
(Some?. v proof) = (op_Mu l t i p l y 5 n) + 1 })

7.4.2 ECVRF-proof2hash

ECV RF− proo f 2hash takes a proof as an input and returns the corresponding hash.

FStar Code:

va l _ECVRF_proof2hash : p i : bytes {Seq . leng th p i = op_Mu l t i p l y 5 n + 1} −>
Tot (hash : bytes)

C Function:

bytes _ECVRF_proof2hash (bytes p i) ;

7.4.3 ECVRF-verify

The proof verification function (ECV RF−veri f y) takes public key, proof and input and returns the result whether
the proof is valid or not.

FStar Code:

l e t ECVRF_verify publ icKey proof i npu t =
l e t gamma, c , s = ECVRF−decode−proo f p i i n
i f not i s V a l i d P o i n t gamma then r e t u r n f a l s e e lse
l e t u = (g^x)^ c ∗ g^s i n
h = ECVRF−hash−to−curve alpha , g^x i n
l e t v = gamma^c ∗ h^s
l e t c_ = ECVRF−hash−po in t s g , h , g^x , gamma, u , v i n
c==c_

19 Page 19 of 27

D4.1 NEXTLEAP Grant No. 688722

C listing:

bool ECVRF_verify (bytes publ icKey , bytes proof , bytes i npu t)

The first step is to transform the provided proof back into its components. First, it is verified that γ is a correct
point of the curve. Then the input is converted into a point of the curve. Then γ, s, and the hash are used to
create v. Finally, v is transformed into a hash c and it is checked to see if that hash is indeed the x-co-ordinate
of γ. If so, then the VRF is valid.

8 ClaimChain

8.1 Introduction

These components presented above can be composed to build the entire Claimchain system, as discussed in
D2.2 and further refined in D4.2. These components are described in modules. Each module provides the full
functionality and are self-contained to allow future re-use.

8.2 Map

The data structures of a map is a list of key-value pairs, where each key retrieves a particular value. In a Claim-
chain, the claimLabel is a key that maps to the values given in by a claimBody.

FStar Code:

type kv (a : eqtype) (b : eqtype) =
|MkKV : key : a −> value : b −> kv a b

type map (a : eqtype) (b : eqtype) =
| MapCons : l i s t (kv a b) −> map a b
| MapList : l i s t a −> l i s t b −> map a b

The API for key-value maps allows the check of presence of the element in the map, getting all the keys/values,
getting the value by the key using the following functions:

FStar Code:

va l containsKey : #a : eqtype −> #b : eqtype −> map a b −> bool
va l conta insValue : #a : eqtype −> #b : eqtype −> map a b −> bool
va l put : #a : eqtype −> #b : eqtype −> map a b −> a −> b −> map a b
va l keySet : #a : eqtype −> #b : eqtype −> map a b −> l i s t a
va l values : #a : eqtype −> #b : eqtype −> map a b −> l i s t b

C Function:

bool containsKey (map m) ;
bool conta insValue (map m) ;
vo id put (map m, a key , b value) ;
a∗ keySet (map m) ;
b∗ values (map m) ;

20 Page 20 of 27

D4.1 NEXTLEAP Grant No. 688722

8.3 Metadata

8.3.1 Keys

A user is able to store keys used for cryptographic operations in a ClaimChain,as in order to have the security
properties listed earlier in Section , these keys are required for auditing claims and establishing a shared key with
their ClaimChain readers. The user has the following types of keys that each have a different source: Signature,
VRF and Diffie-Hellman keys. Note that a user can store more than one keys, and the key is labeled by the
source of their type.

FStar Code:

type keyEnt =
| In i tKeyEn t : source : s t r i n g −> key : bytes −> keyEnt
| PkSig : key : bytes −> keyEnt
| PkVRF : key : bytes −> keyEnt
|PkDH : key : bytes −> keyEnt

In a ClaimChain, we assume that the user has all the keys needed for block generation, i.e. the key-presence
predicate satisfies the below lemma:

FStar Code:

type cryptoKeyEnt =
| CryptoKeyEnt : keys : l i s t keyEnt

{
(ex i s t sb isKeyEntPkSig keys) / \
(ex i s t sb isKeyEntPkDH keys) / \
(ex i s t sb isKeyEntPkVRF keys) / \
l eng th keys > 0

} −> cryptoKeyEnt

8.3.2 Identifiers

A block of claims consists of claims as well as metadata about those claims. It could include some data about the
user used as an identifier, like names and e-mail addresses. identifiers such as e-mail addresses. An identifier
could be present as a pair of a source and identifier:

FStar Code:

type i d e n t i f i e r =
| I n i t I n d e n t : source : s t r i n g −> i d e n t i f i e r : s t r i n g −> i d e n t i f i e r

Also metadata has keys that are used for block generation. The data structure for keys was discussed in the
previous subsection. Finally, all the metadata is hashed. The hash is also stored as a part of metadata.

FStar Code:

type metadata =
| In i tMe tada ta :

screenName : op t ion s t r i n g −>
realName : op t ion s t r i n g −>
i d e n t i f i e r s : op t ion (l i s t i n d e n t i f i e r) −>

21 Page 21 of 27

D4.1 NEXTLEAP Grant No. 688722

keys : cryptoKeyEnt −>
hashMetadata : bytes
{ hashMetadata = hash screenName realName i n d e n t i f i e r s keys } −>
metadata

8.4 Claim

A claim is a main data block in a ClaimChain. It provides information about the keys of the owner and the
keys of other users. There are several different types of claims: KeyBindingClaim, that is used to bind a key,
ClaimChainState claim, a claim about the particular state of the ClaimChain of another user at some particular
moment in time, and a Revocation claim needed to declare that keys have been revoked. All the claims consist
of a label, the data and a signature. The label is used to reference the claim. The precise type of data inside the
claim depends on its type.

FStar Code:

| KeyBindingClaim :
l a b e l : s t r i n g −>
meta : metadata −>
key : bytes −>
s igna tu re : bytes −> cla im

An example of a claim is: Claim: label: ’Isaac Newton’, metadata : ’realName’: ’Isaac Newton’, key: ’keyExam-
ple’, signature : sign (label || meta || key).. The signature is created using the owner’s private key and is used
for authenticity of claims. We assume that only the owner could generate a claim with their signature. The claim
metadata has a public signing key to check whether the claim was created by the owner.

8.5 Capabilities

Capability lists are used to provide an ability to read the claims to specific (allowed) readers.

8.5.1 claimEncoding

A claim encoding function is used to encrypt a claim so that it can only be read by readers with the required
capability. This function (equivalent to Algorithm 1 in D4.2) takes as input the private key of the owner, a nonce,
and the claim to be encrypted.

FStar Code:

l e t claimEncoding privateKeyOwnerVRF nonce c la im =
l e t c la imLabel = getClaimLabel c la im i n
l e t claimBody = getClaimBody c la im i n
l e t nc l = concat nonce cla imLabel i n
l e t k , p roo f = v r f privateKeyOwnerVRF nc l i n
l e t l = h1 k i n
l e t ke = h2 k i n
l e t c = enc ke (concat proo f claimBody) i n
MkKV k (l , c)

C Function:
22 Page 22 of 27

D4.1 NEXTLEAP Grant No. 688722

kv claimEncoding (bytes privateKeyOwnerVRF , bytes nonce , c la im cla im)

First, one gets the label and the claim body. Then one produces the VRF hash and the corresponding proof and
produces the lookup key (l). Then one creates the key (ke) that will be used in the next line to encrypt the proof
and the claim body. The result of the function is the tuple of hash and key-value of a lookup key and ciphered
claim (ke).

8.5.2 decodeClaim

A claim decoding function decodeClaim decrypts an encrypted claim (equivalent to Algorithm 5 in D4.2). It is
used by the reader to decipher a claim, and so is the inverse of claimEncoding. It takes the public key of the
owner, nonce, claim label, VRF value k and an encrypted claim. The VRF value k is needed for the decoding of
capabilities.

FStar listing:

l e t decodeClaim publicKeyOwnerVRF nonce cla imLabel k cipheredClaim =
l e t ke = h2 k i n
l e t proofCla im = dec ke cipheredClaim i n
l e t v r f P r = v r f P r o o f k proo f (concat nonce cla imLabel) i n

i f v r f P r = t rue then Some cla im else None

C Function:

c la im decodeClaim (bytes publicKeyOwnerVRF , bytes nonce ,
s t r i n g cla imLabel , bytes k , bytes cipheredClaim)

First, one gets the encryption key and decrypts the encrypted claim. The next step checks that the proof actually
corresponds to the claim. If it is the case, the claim body is returned, otherwise the operation was not successful.

8.5.3 encodeCapability

This function is used to encode the capabilities entries by encrypting the VRF value k with a shared secret be-
tween the owner and the reader (equivalent to Algorithm 2 in D4.2). The function takes private Diffie-Hellman
key of the owner, public reader key, claim label and VRF value k.

FStar Code:

l e t encodeCapabi l i ty privateKeyOwnerDH publicKeyReaderDH nonce cla imLabel k =
l e t s = sharedSecret privateKeyOwnerDH publicKeyReaderDH i n
l e t body = concat nonce s c la imLabel i n
l e t l a = h3 body i n
l e t key = h4 body i n
l e t pa = enc key k i n
la , pa

C Function:

vo id encodeCapabi l i ty (bytes ∗ la , bytes∗ pa , bytes privateKeyOwnerDH , bytes publicKeyReaderDH , bytes nonce , s t r i n g claimLabel , bytes k)

First, we generate the shared secret between the owner and the user, and then encrypt the claim with the shared
secret, returning the encoded capability for claim given by claimLabel for the reader’s public key.

23 Page 23 of 27

D4.1 NEXTLEAP Grant No. 688722

8.5.4 decodeCapability

The capability decoding procedure decrypt the capability of a user so that they can read a claim (equivalent to
Algorithm 4 in D4.2). To decrypt the capability, a shared secret is generated between the user and the owner,
as well as the decryption key that can then decrypt the VRF value.

FStar Code:

l e t decodeCapabi l i ty privateKeyReaderDH ownerPublicKeyDH nonce
cla imLabel capab i l i t yC iphe red =
l e t s = sharedSecret privateKeyReaderDH ownerPublicKeyDH i n
l e t body = concat nonce s c la imLabel i n
l e t key = h4 body i n
l e t k = dec key capab i l i t yC iphe red i n
l e t l = h1 k i n (k , l)

C Function:

vo id decodeCapabi l i ty (bytes∗ k , bytes l , bytes privateKeyReaderDH ,
bytes ownerPublicKeyDH , bytes nonce , s t r i n g cla imLabel , bytes capab i l i t yC iphe red)

First, the function computes the shared secret between the reader and the ClaimChain owner. The result of the
function is decoded VRF value and lookup key for the claim used to decrypt the encrypted capability.

8.5.5 computeCapabilityLookupKey

This last method computeCapabilityLookupKey is used for computing the capability lookup key (equivalent to
the Algorithm 3 in D4.2). The key is computed using the shared secret between the reader and the owner.

FStar Code:

l e t computeCapabil i tyLookupKey privateKeyOwnerDH
publicKeyReaderDH nonce cla imLabel =

l e t s = sharedSecret privateKeyOwnerDH publicKeyReaderDH i n
l e t body = concat nonce s c la imLabel i n
l e t l a = h3 body i n l a

C Function:

vo id computeCapabil i tyLookupKey (bytes∗ la , bytes privateKeyOwnerDH , bytes publicKeyReaderDH , bytes nonce , s t r i n g c la imLabel)

First, the function computes the shared secret between the reader and the claimchain owner. Then the lookup
key is computed and returned from the function.

8.6 ClaimChain Module

The ClaimChain module is used to provide high level interfaces for block construction and claim retrieval. The
main functionality of the module is to provide high-level operations to allow end-users to make use of a Claim-
Chain, while hiding the details of capabilities and the use of encryption.

Each block consists on the following information:

• nonce: a random number per block that is used only once per chain, which is needed for encryption and
decryption.

24 Page 24 of 27

D4.1 NEXTLEAP Grant No. 688722

• time: the timestamp that records when the block was generated

• meta: the metadata of the block, which may contains optional data that may vary per type of block

• hashMT : the header of the Merkle Tree with all the claims and capabilities of the given ClaimChain

• hashPrevious: the hash of the previous block

• hash: the hash of the currently created block

• signature: Signature of the block as given by owner’s signing key.

The security property of integrity is given by the use of hashes in ClaimChain. In particular, hashPrevious is
used to link the previous block. For audit purposes and consistency of the entire ClaimChain is provided by
hashMT. The security property is given by reduction to the security property of a strong hash function, such that
no adversary is able to inject the block in between the block list without being detected. The use of a signature
of a block maintains the property of authenticity, as it can prove that each new block was created or authorized
by the owner of the ClaimChain.

FStar Code:

type claimChainBlock =
| In i tC la imCha in :
nonce : bytes −>
t : t ime −>
meta : metadata −>
hashMT : bytes −>
hashPrevious : bytes −>
hash : bytes −>
s igna tu re : bytes −>
claimChainBlock

8.6.1 generateBlockGeneral

The generateBlockGeneral function by the owner to create a new block on a ClaimChain with a new set of claims
and capabilities (Equivalent to Section 3.4.3 ’Constructing a new block’ in D4.2).

FStar Code:

p r i v a t e va l generateBlockGeneral :
privateKeyDH : key −>
privateKeyVRF : key −>
l i s t C l a i m s : map s t r i n g c la im −>
accessContro l : map (publicKeyReader : key) (l a b e l s : l i s t s t r i n g) −>
meta : metadata −>
reference : op t ion (l i s t c la imChainBlock) −> ML claimChainBlock

C Function:

ClaimChainBlock generateBlockGeneral (bytes privateKeyDH , bytes privateKeyVRF ,
map l i s t C l a i m s , map accessControl , c la imChainBlock∗ re ference) ;

Note that listClaims is used to store all the claims the user wants to put to the block. Also, accessControl is used
to store the map between readers (given by the public key of the reader) and the labels of claims that a reader
is allowed to read. References are needed to access to the previous blocks.

25 Page 25 of 27

D4.1 NEXTLEAP Grant No. 688722

8.6.2 cipherClaims

The cipherClaims function consists in encrypting all the claims. It does this via applying the function claimEn-
coding to all the claims that the user wants to put onto the block. The owner provides the nonce and his private
VRF keys in order to encrypt the claims. The map between claim labels and encrypted claims is returned as a
result of the function.

FStar Code:

va l c ipherCla ims : c l s : map s t r i n g claim−> nonce : bytes −>
privateKeyVRF : bytes −> ML (map s t r i n g (kv (bytes) (tup le2 bytes bytes)))

C Function:

map cipherCla ims (map c ls , bytes nonce , bytes privateKeyVRF) ;

8.6.3 oneUserEncoding

The function oneUserEncoding is a helper function needed to encrypt all the claim labels for a particular user.
The function requires the access control matrix, the private Diffie-Hellman key, and nonce as well as the rows
of claims. The procedure takes all the rows one-by-one and maps the required claim labels to their encrypted
claims, followed by applying encodeCapability to create the capability encoding.

FStar Code:

l e t rec oneUserEncoding privateKeyDH row cla ims nonce =
l e t l a b e l s = row . values i n
match l a b e l s w i th | hd : : t l −>
l e t c la im = get c la ims hd i n
encodeCapabi l i ty pr iva teKey row . key nonce hd k

C Function:

bytes oneUserEncoding (bytes privateKeyDH , row∗ row , c la ims∗ claims , bytes nonce)

8.6.4 allUserEncoding

The function allUserEncoding applies oneUserEncoding for all the users in access matrix.

FStar Code:

va l a l lUserEncoding :
accessContro l : map (publicKeyReader : key) (l a b e l s : l i s t s t r i n g)−>
privateKeyDH : key −>
cla ims : (map s t r i n g (kv (bytes) (tup le2 bytes bytes))) −>
nonce : bytes −>
oneUserEncoding (l i s t (tup le2 (l a : bytes) (pa : bytes)))

C Function:

bytes al lUserEncoding (map accessControl , bytes privateKeyDH , map claims , bytes nonce) ;

26 Page 26 of 27

D4.1 NEXTLEAP Grant No. 688722

These functions create the list of encodings for capabilities and claims. These capabilities and claims are then
put to the Merkle Tree for the entire ClaimChain. First, the set containing the capabilities and claims is generated,
and this set will be used as a set of leaves for Merkle Tree. Second. the set of leaves is used to generate the
hash-root of the tree, and this hash (hashMT) is put to the claim chain block, along with the current time and the
nonce that was used in all cryptographic operations. Third, the hash of this previous block is also stored in the
block. Finally, the block is signed and put to the list of blocks of the ClaimChain.

8.6.5 claimRetrieval

The claimRetrieval function takes as input the reader’s private keys and public keys of the owner of blockchain,
the hash of the ClaimChain, and claim label to retrieve. The result of the function is a decrypted claim body. For
the block retrieval we provide the following method:

FStar Code:

va l c l a i m R e t r i e v a l : privateKeyReaderDH : key −>
publicKeyReaderDH : key −>
publicKeyOwnerDH : key −>
publicKeyOwnerVRF : key −>

tree_hash : bytes −>
nonce : bytes −> cla imLabel : s t r i n g −> Tot (op t ion bytes)

C Function:

bytes c l a i m R e t r i e v a l (bytes privateKeyReaderDH , bytes publicKeyReaderDH ,
bytes publicKeyOwnerDH , bytes publicKeyOwnerVRF ,
bytes tree_hash , bytes nonce , s t r i n g c la imLabel) ;

First, the function computes the lookup key using the computeCapabilityLookupKey, with the lookup key being
used to query the Merkle Tree in order to retrieve the encrypted capability. The capability is then decrypted
using the decodeCapability to get the tuple of VRF value k and the key needed to retrieve the claim. The claim
is then decoded using decodeClaim function, with the final result being the value of the claim (claimBody) given
as plaintext.

FStar Code:

l e t c l a i m R e t r i e v a l keys tree_hash nonce cla imLabel =
l e t lookUpKey = computeCapabil i tyLookupKey privateKeyReaderDH

publicKeyReaderDH nonce cla imLabel i n
l e t capab i l i t yC iphe red = queryMerkleTree tree_hash lookUpKey i n
l e t (k , l) = decodeCapabi l i ty privateKeyReaderDH

publicKeyOwnerDH nonce cla imLabel capab i l i t yC iphe red i n
l e t c = queryMerkleTree tree_hash l i n
l e t claimBody = decodeClaim publicKeyOwnerVRF

nonce cla imLabel k c i n claimBody

C Function:

vo id c l a i m R e t r i e v a l (c la im∗ claim , bytes∗ keys , bytes tree_hash ,
bytes nonce , s t r i n g c la imLabel)

27 Page 27 of 27

D4.1 NEXTLEAP Grant No. 688722

9 Conclusion

In this deliverable, we have produced F* code for all of Claimchain as specified initially in D4.1 and finalized in
D4.2. This code allows the automatic proof-proving of the security properties defined in this deliverable. This
code will serve as a foundation for a generic ClaimChain library that can be integrated into open source code
given by Workpackage 5.

References

[1] Ralph C Merkle. A certified digital signature. In Conference on the Theory and Application of Cryptology,
pages 218–238. Springer, 1989.

[2] Silvio Micali, Michael Rabin, and Salil Vadhan. Verifiable random functions. In Foundations of Computer
Science, 1999. 40th Annual Symposium on, pages 120–130. IEEE, 1999.

[3] J Ian Munro, Thomas Papadakis, and Robert Sedgewick. Deterministic skip lists. In Proceedings of the third
annual ACM-SIAM symposium on Discrete algorithms, pages 367–375. Society for Industrial and Applied
Mathematics, 1992.

[4] Andreas Pfitzmann and Marit Köhntopp. Anonymity, unobservability, and pseudonymity—a proposal for
terminology. In Designing privacy enhancing technologies, pages 1–9. Springer, 2001.

[5] William Pugh. Skip lists: a probabilistic alternative to balanced trees. Communications of the ACM,
33(6):668–676, 1990.

28 Page 28 of 27

	Introduction
	Formal Definitions
	Security
	Privacy
	Anonymity
	Decentralization

	Formal Verification using F*
	Sets and Lists
	Skiplist
	Formal Definition
	Skiplist Specification
	Complexity of Operations over skiplists
	API
	Insert
	Search
	Split
	Remove

	Skiplists with cryptographic hash pointers

	Merkle Tree
	Formal Definition
	Specification
	API
	Proof of existence
	Proof of inclusion

	Verifiable Random Functions (VRFs)
	Definition
	Specification
	Helper Functions
	OS2ECP
	ECP2OS
	I2OSP

	API
	ECVRF-prove
	ECVRF-proof2hash
	ECVRF-verify

	ClaimChain
	Introduction
	Map
	Metadata
	Keys
	Identifiers

	Claim
	Capabilities
	claimEncoding
	decodeClaim
	encodeCapability
	decodeCapability
	computeCapabilityLookupKey

	ClaimChain Module
	generateBlockGeneral
	cipherClaims
	oneUserEncoding
	allUserEncoding
	claimRetrieval

	Conclusion

